The universal embedding dimension of the binary symplectic dual polar space

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the nucleus of the Grassmann embedding of the symplectic dual polar space I, I

Let n ≥ 3 and let F be a field of characteristic 2. Let DSp(2n, F) denote the dual polar space associated with the building of type Cn over F and let Gn−2 denote the (n − 2)-Grassmannian of type Cn. Using the bijective correspondence between the points of Gn−2 and the quads of DSp(2n, F), we construct a full projective embedding of Gn−2 into the nucleus of the Grassmann embedding of DSp(2n, F)....

متن کامل

Points and hyperplanes of the universal embedding space of the dual polar space DW ( 5 , q ) , q odd

In [10], one of the authors proved that there are 6 isomorphism classes of hyperplanes in the dual polar space DW (5, q), q even, which arise from its Grassmann-embedding. In the present paper, we extend these results to the case that q is odd. Specifically, we determine the orbits of the full automorphism group of DW (5, q), q odd, on the projective points (or equivalently, the hyperplanes) of...

متن کامل

extensions of some polynomial inequalities to the polar derivative

توسیع تعدادی از نامساوی های چند جمله ای در مشتق قطبی

15 صفحه اول

Metric dimension of dual polar graphs

A resolving set for a graph Γ is a collection of vertices S, chosen so that for each vertex v, the list of distances from v to the members of S uniquely specifies v. The metric dimension μ(Γ) is the smallest size of a resolving set for Γ. We consider the metric dimension of the dual polar graphs, and show that it is at most the rank over R of the incidence matrix of the corresponding polar spac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2003

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(02)00545-9